HW05 - Buffers, Titrations, and Polyprotics

▲ This is a preview of the published version of the quiz

Started: Feb 23 at 12:43pm

Quiz Instructions

Homework 05

Buffers, Titrations, and Polyprotics

1 pts

Question 2	1 pts
How many moles of $Ca(OH)_2$ are needed to neutralize three moles of HCI?	
O 2	
0 1.5	
0 1	
3	

Question 3	1 pts
An aqueous solution is prepared with 2 moles of HCI and 1 mole of $Ca(OH)_2$. The resulting solution contains n	nainly
\bigcirc water, Cl ⁻ ions, H ⁺ ions, OH ⁻ ions, and Ca ²⁺ ions.	
\bigcirc water, Cl ⁻ ions, H ⁺ ions, and Ca ²⁺ ions.	
\bigcirc water, Cl ⁻ ions, OH ⁻ ions, and Ca ²⁺ ions.	
\bigcirc water, Cl ⁻ ions, and Ca ²⁺ ions.	

Question 4	1 pts
Identify the products of the following chemical reaction: 3LiOH + $H_3PO_4 \longrightarrow$	
O 3LiH + (OH) ₃ PO ₄	
\bigcirc Li ₃ P + 2H ₂ O + H ₃ O ₅	
\bigcirc 3H ⁺ + 3O ₂ + H ₃ Li ₃	
O Li ₃ PO ₄ + 3H ₂ O	

 \bigcirc Sr(NO₂)₂ + 2H₂O₂

Question 6		1 pts
Aqueous ammonia c fertilizers. They are	can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as	
\bigcirc (NH ₄) ₂ SO ₄ and	NH ₄ NO ₃ , respectively	
O cyanamide and	cellulose nitrate, respectively	
\bigcirc NH ₄ SO ₃ and NH	H ₄ OH, respetively	
\bigcirc NH ₄ SO ₄ and NH	H ₄ NO ₃ , respectively	

Question 7	1 pts
Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and ac acid.	etic
O potassium cyanide	
◯ potassium acetate	
O potassium formate	
O potassium amide	

Question 8	1 pts
What is the pH of an aqueous solution that is 0.018 M $C_6H_5NH_2$ ($K_b = 4.3x10^{-10}$) and 0.12 M $C_6H_5NH_3CI$?	
2.87	

0 4.63			
0 3.81			
4.02			

Question 9	1 pts
A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.3 What is the pH of this buffer? $K_a = 6x10^{-6}$ for HA.	3 moles of KOH into 710 mL of solution.
0 5.22	
0 5.66	
0 8.34	
0 13.23	

Question 10	1 pts
Which one of the following combinations is NOT a buffer solution?	
O HBr and KBr	
\bigcirc NH ₃ and (NH ₄) ₂ SO ₄	
O HCN and NaCN	
CH ₃ COOH and NaCH ₃ COO	

Question 11	1 pts
Which of the following mixtures will be a buffer when dissolved in a liter of water?	

0.2 mol HF and 0.1 mol NaOH		
0.2 mol HBr and 0.1 mol NaOH		
0.3 mol NaCl and 0.3 mol HCl		
O 0.1 mol Ca(OH) ₂ and 0.3 mol HI		

Question 12	1 pts
What is the pH of a solution which is 0.600 M in dimethylamine ((CH ₃) ₂ NH) and 0.400 M in dimethylamine hydrochloride ((CH ₃) ₂ NH ₂ Cl)? K _b for dimethylamine = 7.4×10^{-4} .	
0 10.87	
0 11.21	
0 11.05	
0 10.78	

Question 13	1 pts
What would be the final pH if 0.0100 moles of solid NaOH were added to 100mL of a buffer solution containing molar formic acid (ionization constant = 1.8×10^{-4}) and 0.300 M sodium formate?	וg 0.600
3.65	
0 4.05	
3.84	
3.44	

Question 14		1 pts
-------------	--	-------

A buffer was prepared by mixing 0.200 moles of ammonia ($K_b = 1.8 \times 10^{-5}$) and 0.200 moles of ammonium chloride to form an aqueous solution with a total volume of 500 mL. 250 mL of the buffer was added to 50.0 mL of 1.00 M HCl. What is the pH of this second solution?

0 8.78			
0 8.38			
0 8.53			
0 8.18			

Question 15	1 pts
A solution is 0.30 M in NH ₃ . What concentration of NH ₄ Cl would be required to achieve a buffer solution with of 9.0? $K_b = 1.8 \times 10^{-5}$ for NH ₃ .	a final pH
○ 0.54 M	
○ 0.10 M	
○ 0.32 M	
○ 0.45 M	

Question 16	1 pts
What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO ₂ (aq) with 0.1 M KOH(aq) ² 4.3×10^{-4} .	? For HNO ₂ , K _a =
3.37	
2.31	
7.00	
2.01	

Question 17	1 pts
For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH (aq), calculate the pF of 55.0 mL of the base. For salycylic acid, $pK_a = 2.97$.	H after the addition
0 10.98	
0 11.02	
0 11.26	
○ 7.00	

Question 18	1 pts
Consider the titration of 50.0 mL of 0.0200 M HClO(aq) with 0.100 M NaOH(aq). What is the formula of the main species in the solution after the addition of 10.0 mL of base?	
◯ CIO-	
O NaOH	

Question 19	1 pts
50.0 mL of 0.0018 M aniline (a weak base) is titrated with 0.0048 M HNO ₃ . How many mL of the acid are reach the equivalence point?	e required to
○ 4.21 mL	
\bigcirc This is a bad titration as HNO ₃ is not a strong acid.	

🔵 133 mL	
----------	--

🔵 18.8 mL

Question 20	1 pts
When we titrate a weak base with a strong acid, the pH at the equivalence point will be	
○ pH < 7	
\bigcirc It is impossible to know unless we are given the K_b of the weak base.	
○ pH > 7	
○ pH = 0	

Question 21	1 pts
What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid HZ with 0.200 M Na = 2.4x10 ⁻⁷ for the unknown acid HZ	ıOH? K _a
0 10.1	
0 4.14	
7.00	
9.86	

Question 22	1 pts
What is the pH at the equivalence point of the titration pictures below?	

Question 24	1 pts
The acid form of an indicator is yellow and its anion is blue. The K _a of this indicator is 10 ⁻⁵ . What will be the approximate pH range over which this indicator changes color?	
○ 4 < pH < 6	
○ 3 < pH < 5	
○ 6 < pH < 8	
○ 5 < pH < 7	

Question 25	1 pts
The unionized form of an acid indicator is color of the indicator in a solution of pH 3	s yellow and its anion is blue. The K_a of this indicator is 10 ⁻⁵ . What will be the ?
🔘 green	
O yellow	
O blue	
O orange	

Question 26	1 pts
Aspartic acid is a polypeptide side chain found in proteins. The pK _a of aspartic acid is 3.86. If this polypeptide w an aqueous solution with a pH of 7, the side chain would have what charge?	ere in
neutral	
◯ positive	
◯ there is no way to know	

negative

Question 27	1 pts
Blood contains a buffer of carbonic acid (H ₂ CO ₃) and hydrogen carbonate ion (HCO ₃ ⁻) that keeps the pH at a restable 7.40. What is the ratio of [HCO ₃ ⁻] / [H ₂ CO ₃] in blood? $K_{a1} = 4.30 \times 10^{-7}$ for H ₂ CO ₃ . (Hint: Assume [CO ₃ ²⁻] =	e 0)
0.0926	
0 10.8	
◯ 3.98 x 10 ⁻⁸	
○ 1.71 x 10 ⁻¹⁴	

Question 28	2 pts
H_2SO_4 is a strong acid because the first proton ionizes 100%. The K _a of the second proton is 1.1x10 ⁻ the pH of a solution that is 0.100 M H ₂ SO ₄ ? Account for the ionization of both protons.	² . What would be
0.963	
0.955	
0 1.00	
○ 2.05	

Question 29	1 pts
What is the pH of a 3.4×10^{-8} M HClO ₄ solution at room temperature?	
○ 7.0	

0 5.3			
0 7.1			
6.9			

Not saved	Submit Quiz